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SUMMARY

This paper deals with the numerical solution of linear
differential equations of fourth order by finite differences.

It points out significant (but usually overlooked) errors which
result from the conventional method of imposing the boundary
conditions in such problems. Revised finite difference formulas
are derived which apply near the boundaries and which eliminate
the above errors.

Three commonly encountered boundary conditions are consid-
ered. These correspond, in the terminology of beam analysis, to
a clamped end, to a simply supported end and to a free end.

The improvement in accuracy that can be achieved with the
revised formulas is illustrated by two representative examples.
The revised formulas are shown to reduce the overall error of the

numerical solution by a factor of about five in a typical case.
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1l. Introduction

Let ¢(x) denote an unknown function which is governed by

a linear differential equation of the following form
4 3 2
D¢ + £4(x) D¢ + £,(x) D% + £,(x) D¢ + £,(x) ¢ = g(x) 1.1)

where the coefficients f3(x), fz(x), fl(x), fo(x) and the
forcing function g(x) are all known functions.

We seek an approximate numerical solution of Eq. (l1.1l) by
finite differences which satisfies appropriate boundary conditions
at x =0 and at x = 2 . Three commonly encountered boundary
conditions are considered in this paper, and are labelled below
according to the terminology used in beam analysis, namely,

1) Clamped End

¢ =0
at x =0 or at x = % (1.2)
D¢ = Q
2) Simply Supported End
¢ =0
2 at x =0 or at x = 2 (i3}
D% =0

3) Free End
Dz¢ = 0}

3 at x =0 or at x
D¢ =0

[}
)

(1.4)

The boundary conditions imposed at the two ends may be like
or unlike. There is no restriction, except of course that if one
end be free, the other is normally clamped to ensure that the

beam configuration remains stable under arbitrary loading.
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In the finite difference analysis, the domain 0<x £ 2

is subdivided into N' equal intervals each of width
how s (1.5)
Nﬁ' .

If we include the two end points, the above domain contains
(N' + 1) stations. The function ¢ is now represented by its
discrete values L
clear from Egs. (1.2) and (1.3), however, that the function

(1 =1, 2, 3; .ss+) at these stations. It is

vanishes at either or at both of the end points depending on the
particular boundary conditions that happen to apply. In any case
it is convenient in the present context to let N denote the
actual number of stations at which ¢i is initially unknown. For

a beam whose ends are either clamped or simply supported,

N = N' - 1, For a beam free at one end and clamped at the other,
N = N' |

It is also convenient to designate the stations at which ¢
is initially unknown, from left to right, by index i =1, 2, 3,
..« N . For a beam free at the left end, index i = 1 denotes
the actual free end itself, at location x = 0 . For a beam
clamped or simply supported at the left end, however, index i =1
denotes the first station inboard of the left end, at location
x = h . This convention simplifies the indexing of the final
matrix equations so that they always run from i =1 to i =N
inclusive.

To determine the unknowns 010 93¢ b3¢ cc..by , We rewrite
Eq. (1.1) in finite difference form for the ith station, then
require that the resulting equation be satisfied for each of the

1=2
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stations i =1, 2, 3, ....N . This produces N simultaneous
equations in N unknowns which suffices to establish the requirea
solution. The actual manipulations are handled most expediently
in matrix format.

Except for the stations at or immediately adjacent to the
boundaries, the various derivatives in Eq. (l1.1l) are usually
approximated by the four conventional central difference formulas
summarized in Egs. (1) through (4) of Table I.

These formulas are based on approximating the function ¢

in the vicinity of arbitrary station i by a truncated series of

the form

2 (x—xi)2 3 (x-xi)3
(¢ - ¢i) = D¢y (x—xi) + D% e % DG, e ¥ s (1.6)
The number of terms retained in this series depends on the accuracy
required in the final difference formulas. Eq. (1.6) is applied
to a number of contiguous stations symmetrically disposed on both
sides of station i . This yields a set of simultaneous equations
which can be solved for the initially unknown coefficients Dé, .
Dz¢i, D3¢i, «++. oOf the series thus yielding the required finite
difference formulas. These formulas are represented by the
bracketed expressions in Egs. (1) through (4) of Table I.
By re-introducing an additional term into the original series
and retracing the above solution, an estimate of the truncation
error is obtained. This is represented by the final term, that

is, the term outside the brackets, in Egs. (1) through (4) of Table

I. Theoretically, the total truncation error could be represented

1-3




Table I Conventional Finite Difference Formulas

B R P

Central Differences
« 3 1 1 3 2.3
e, = ¢ [0 ~gly g 0, b 0] - ghDTe, + ... (1)
Bi %D 2 B s
D¢, ;7[0 iy 20 oy g 0] Iz h Doy + ... (2) :
3, sttt 3 5 1 o R
p%, ;3[ gt b+ 0O ¢i+1+5¢i+2] Fh20%, + ..
= E
; 4 ;1 3] - _l 26
', D ¢i = h—4-[¢i-2 4¢i_l + 6¢i 4¢i+l + ¢i+2 l 3 h™D ¢i o e (4)
Clamped End
ps, = % [o + Lo, + o] - #0%D% + ... (5)
4 A i -
§~ D¢l—h1~ 2¢l+¢2+0‘ -ﬁhD¢l+... (6)
3  § rl 1 403
D¢l-h—3 -2-¢l'¢2+‘2-¢3] '-6'D¢0+.. )
3
D¢
4 =3 1| . W Ptk
: D¢l-h—4 7¢l 4¢2+¢3] BT-+.. (8)
£
&
L
E 1-4
b
¢
5

s N3 A R, B . . O, we = N

§ T




Table I Cont'd

Simply Supported End
sd 1 ] g Bzt
Dé, =g P ragp, + 0 FRTR
PR i ey B
gl 1] R ey
bl | B S c el SRR R
4 _-_1_[ E ] T .4
D ¢1 = h4 + 5¢l 4¢2 + ¢3 + iz D ¢0 Tt
Free End
~ At statlon i=1
: 3
;i --hDé*‘---
i ; D2¢1 20
%, =0
4 1 1 4
: D¢l*h—4-[2¢l-4¢2+2¢3] -z D%, +
3
5 At statica i = 3
K
% s 10 1 ] o e
: wz H[?l+0-+?3+0 6hD¢2+.“
" 3 s 3 1 2.8
: D¢2—F[¢1-2¢2+¢3+0] —1—th¢2 v
{t
§ 3 QL[ 1 1 ] R
1! i e Wt 2 Sl e s Sl
&
i e e X g 14
F D¢2—h4[ 2¢l+5¢2 49 +¢4]+12D¢ * e

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)
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by an infinite series of which the quantity shown is merely the
leading term.

Notice that all four of the conventional central difference
formulas shown in Table I have truncation errors of order n? -
Additional terms of the series which represent the truncation
error are not given in the table but they can be shown to involve
steadily ascending powers of h , that is, h3, h4, hs, atallels OO
Hence in the limit of very small mesh size h , the higher order -+~
become relatively negligible and the single term shown becomes
itself an adequate approximation to the overall truncation error.

Also notice that for a truncation error of order h2 , the
central difference formulas for D¢i and D2®i require a band
width of only three, that is, they involve the values of ¢ at
only the three successive stations (i-l) , i and (i+l) . To
achieve the same order of truncation error for D3¢i and D4¢i
on the other hand requires a band width of five.

When reduced to matrix format, the basic relation Eg. (1,1)
has a band width equal to the widest band of any derivative which
appears in it. For a given order of truncation error, the deriva-
tive of highest order requires the greatest band width. Thus for
a truncation error of order hz , the final calculation matrix
representing Eq. (l.1l) has a band width of five; it is a penta-
diagonal matrix.

The first four formulas in Table I may be applied routinely
at interior stations, but special problems arise near the bounda-

ries. It suffices here to illustrate the problem for the left

end. Consider the case where the left end is either clamped or

1-6
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simply supported. Then at station i=1 immediately adjacent
to the end in question, the conventional central difference
expressions for D¢ , and D2¢ , involve the three quantities
¢o’ ¢1, and ¢2 . The corresponding central difference ex-
pressions for D3¢, and D4¢ involve the five quantities

¢-1’ ¢°, ¢l’ ¢2 and ¢3 . The quantities ¢l' ¢2 and ¢3
entail no problems. The quantity ¢° vanishes for either a
clamped end or a simply supported end and therefore involves no
difficulties. The problem that now arises, however, is that the
quantity ¢-l lies outside the normal domain of integration

o £ x £ %4 , and is in fact undefined. Thus D3¢ and D4¢ '

’

cannot be evaluated from the usual central difference formulas
until this difficulty be resolved.

A similar problem arises also if the left end be free. Re-
call from the labelling convention adopted earlier that for a
free end, the actual end of the beam at location x = 0 is
denoted by station i =1 ., Application of the conventional
central difference formulas at this station involves the five
quantities ¢y ¢o' ¢l' Py ¢3 . Application of the conven-
tional central difference formulas at the next station i=2
involves the five quantities ¢o’ ¢1, ¢2, ¢3, ¢4 . Once again,
however, the quantities ¢-l and ¢o are initially undefined
and the conventional equations cannot be applied until this
double indeterminacy be resolved.

It is apparent from considerations of symmetry that

corresponding questions arise also at the right end of the span.

1=7
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Fortunately, there exists a generally accepted convention

for resolving these questions. The rationale of this conventional

solution, along with a careful analysis of its limitations, is

presented in the next section. The results are in some respects

surprising,
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2. The Conventional Boundary Formulas and Their Limitations

The conventional solution for the left end clamped can be
found by making the following substitutions in Eq. (1) of Table

I, namely,

i=0
¢° =0 (2.1)
D¢o =0

The resulting relation can then be solved for ¢_ as follows |

1

. . N T
= ¢_l-¢+l ?hD¢o+-o- (2.2)

We can now evaluate Egs. (1) through (4) of Table I at station
i = 1 making use of the foregoing substitutions for ¢° and ¢_1 .
i In this way we obtain the conventional finite difference formulas

for a clamped end as summarized in Egs. (5) through (8) of the

o
it g Ay

table.
A similar process may be used for the simply supported end.

Thus we make the following substitutions in Eg. (2) of Table I,

WS s B

namely,

. ¢ =0 (2.3)

A SR PSR i

The resulting relation can then be solved for ¢_ as follows

1

2 A B T Ir  r

A y S

:
& |
k.

b

h
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We can again evaluate Egs. (1) through (4) of Table I at
station i = 1 by making use of the above substitutions for ¢o
and ¢_, . In this way we obtain the conventional finite difference
formulas for a simply supported end as summarized by Egs. (9)
through (12) of the table.

The conventional solution for the left end free can be found

by making the following substitutions in Egs. (2) and (3) of Table

I, namely,

- 7% O
2, _
<

The resulting pair of equations can then be solved simultane-

ously for ¢o and ¢l . This gives

~ = 1 4_4
5 3 1,44

We can now evaluate Egs. (1) through (4) of Table I at station

b 1 in the usual way, by making use of Egs. (2.6) and (2.7) to
eliminate the gquantities ¢° and ¢l wherever they occur. 1In this
way we obtain the conventional finite difference formulas at station
i =1 for a free end as summarized in Egs. (13) through (16) of
the table.

Notice that for a free end, special formulas are required not
only at station i =1 but also at station i = 2 ., At the latter
point the quantity ¢_1 is no longer involved so that Eq. (2.7) is

no longer needed. But Eq. (2.6) is still needed to eliminate ¢°

2-2
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wherever it occurs. In this way we obtain the conventional finite

difference formulas at station i = 2 for a free end as summarized
in Egs. (17) through (20) of Table I.

It is usually assumed that the conventional boundary formulas
all have truncation errors of order h2 because they are derived
from central difference formulas having truncation errors of order
h2 . Unfortunately, the results listed in Table I show that this
is not necessarily the case. Notice that if the truncation error
terms be omitted from Egs. (2.2), (2.4), (2.6) and (2.7) by over-
sight, the conventional difference formulas will all seem to be of
order hz . This point is easily overlooked and it probably
accounts for the widespread misunderstanding concerning the true
truncation errors of the conventional finite difference formulas.
An important aim of this paper is to call attention to this common
oversight.

It is clear from Table I that some of the conventional formulas
have truncation errors of order h , h° or even h.l ! Such errors
are excessive and are inconsistent with the order of error involved
in the rest of the calculation matrix. They can be expected to
increase unnecessarily the overall error of the numerical solution.
Sample calculations presented later in this paper confirm that
this is indeed the case. It is shown that revision of these faulty
expressions greatly reduces the overall error of the final solu-
tion.

The method of making the needed revisions, and the results of

these revisions, are summarized in the next section.

2-3
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3. Revised Finite Difference Equations of Consistent Truncation

Error

Fortunately, the method of developing revised finite difference
formulas where needed is straight forward, if sometimes rather
tedious. The function ¢ in the vicinity of the end is repre-
sented by a truncated power series. The form of the series must
be such as to satisfy the boundary conditions of interest as
previously summarized in Egs. (1.2), (1.3) or (1.4)

Thus for a clamped end at x = 0 we set

2 3 4 5
o o X 3 X 4 X S iex
TN Pla T TP e s i3+1)

& For a simply supported end at x = 0 we set

¢ = DO_x + D¢ "3+D4¢ x4'+1:5cz> i s (3.2)
2 — o) o 37T o 471 o 5! SRS ¢

For a free end at x = 0 we set

oo AL

4 5

5 4 X 5 X

The number of terms retained in the series depends as usual
on the order of the derivative to be estimated and the truncation
4 error of the estimate. The truncated series expression is applied
to a number of contiguous stations near the end of the beam. This
yields a set of simultaneous equations which can be solved for the
; initially unknown coefficients D¢°,
D6, D°#,, D’6, .... in terms of the quantities @ , d,, 65, ... .

2
D ¢o, D¢

Once these coefficients are obtained in this way, the various deri-

R
»

¥
—

vatives of ¢ at any specified station may be evaluated analytically
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w
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—
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from the basic series expression. The result is the finite

difference formula of interest.

Dt R g e de v oS

By introducing an additional term into the original series

and retracing the original solution in the usual way, the leading

term of the truncation error can readily be found.
The above process has been carried out for all of the con-

ventional finite difference formulas of Table I which involve

excessive truncation errors. The revisions are always such as to

: : 2
render all truncation errors consistently of order h" . The re-
sults of this revision are summarized in Table II. Notice that

B every formula in Table I whose error term is initially of order

| 5 h2 reappears in Table II without change. Only the faulty formulas
g have been revised.

An interesting detail appears in Eq. (8) of Table II. The

2

truncation error term is seen to involve h but the numerical

£ coefficient happens to vanish. Hence the true truncation error

degenerates to order h3 in this particular instance, which is

exceptional. It might be supposed that this circumstance would

permit a reduction of band width here but such is not the case for
A if the band width be reduced by one, the resulting truncation
error is found to be of order h not of order h2 . Hence Eq.

i (8) must be retained as written.

e
R O

¥

3=2

D R o
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Table II Finite Difference Formulas of

Consistent Second Order

Truncation Error

Central Differences

1

: 1 1
ol R [‘"7"1-;*°*2‘°i+1*°:| oL

IR
D¢i'h"2'L°+¢i-1'2¢i+¢i+1+°]'
3 + 1 1 >
D"i*;ﬁ['z“”i-z*‘”i-l*o Py T
ple. s L. lo. - a0, . + 66, - 4b, . +
i 707 a2 i-1 i i+l
Clamped End
= L -
D¢l-5[o+2¢2+o]
2.0}
o, ai. |- 3¢ +0+%0 .
Wb 1 Bt
. &2 - 84 -1
i R [1“’1 - S B 4"’4] i

123
h*D ¢i = e

1 2.4

ﬁhb¢l+ .o

i 165525

54,”2] F B, + ...
1 2.6

L 2.3

2.6
(0) h"D ¢¢l+ “iole

T TN A sttt oo .- At M § b B OBt n ) ol R N -y . -

(1)

(2)

(3)

(4)

(5)

(6)

(7)*

(8)*
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Table II Cont'd

Simply Supported End
r
P 1 W o =
D, = ¢ L0+2-¢2+0] 7 hD%, + ..
T e W W N
D¢l'h2[2¢l+_¢2+°] -n-hD¢1+..
3 1 = AL 5 9 2.5
D¢1';§"[11¢1 1'I¢2+1'I¢3] B i
4, =1 |32 - 27 8 - L - 2_ 256, t+ ..
D<"1'h4[5 85 %27 %% 104’4} R
Free End
At i =1
k| - 1423
02¢1 =0
D%, = 0
4, 23 i &
D ¢l = ;z 4.2353¢1 9.1765¢2 + 5.647l¢3 0.7059¢4J

+ 0.2255 h206¢l bl

3-4
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(12)*

(13)

(14)
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Table II Cont'd

At 1 }
oy &k l% +0+ 30,4 o] - #h0%D%, + ... (17) f
nquz = -17[ -2, + 0, - %5 h2D4¢2 + .. (18)
D%, = ig [- 156, + 36, - £ 6, + o] + &5 n?p% + ... (19)*
Dy, = iz [- 1.64716, + 4.23534, - 3.5294¢, + o.9412¢4]

+ 1.1451 h2D6¢l P (20) *

*The asterisks denote those formulas of Table II which differ from
the corresponding formulas of Table I.

=
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4., Finite Difference Formulas of Minimum Truncation Error for

Specified Band Width

An interesting and significant feature of Table II is that
the finite difference expressions for the various lower derivatives
usually involve lesser band widths than that required for calcula-
ting D4¢ . The latter is fixed by the requirement that the

truncation error in the approximation for D4¢ should be of order

b ..

A natural question that now arises is whether there be any
possible further advantage in making use of this full available
band width to reduce the truncation errors associated with these
lower derivatives.

This approach is attractive in that it entails no increase
whatever in the overall band width of the final calculation matrix.
Hence it can be accomplished with a negligible increase in the
calculation burden.

On the other hand, the method has the limitation that, although
the accuracy of the lower derivatives is improved, the error in the
overall equation still remains of order h2 . Hence what we have
here at best is the somewhat uncertain possibility of a marginal
further improvement in accuracy at essentially negligible cost.

In order to permit investigation of this possibility, a further
revision of the finite difference formulas was therefore carried
out based on two principles. The first was to choose a band width

such as to approximate D4¢ to order h2 . The second was to

utilize the resulting full band with for estimating all lower

4-1
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derivatives. The finite difference formulas obtained in this way,

along with their associated truncation errors, are summarized in

Table III. Notice that all expressions for D4¢ are the same in

Table III as in Table II. Only the lower derivatives are different.
A further significant feature of Tables II and III is that

the expressions for D4¢l at station 1i=1 involve terms in

¢l' ¢2, ¢3, ¢4 . The first three of these fall within the overall

penta-diagonal matrix format which characterizes all interior

stations i =2, 3, 4, ... etc. But the term in ¢4 fal® outside

this band at 1 =1 . .

Similar considerations also apply at the opposite end% station
g 4N :
i=N. Thus D¢ invloves terms in Pn-37 ¢N-2' ¢N-1 and ¢y
and the term in ¢N-3 falls outside the basic penta-diagonal

format.

Fortunately, there is a very simple method to eliminate the
term in ¢, from the equation at i =1 and the term in Pn-3
from the equation at i = N . This restores the stricfly penta-

diagonal format which is so convenient and efficient in the final

e
numerical solution. The details of the method are explained in a

later section of this paper.

4-2
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Table III Finite Difference Formulas of Minimum Truncation Error

for Specified Band Width**

Central Differences

D¢

Dz¢i = ig {' %5 b T By % $5-1 - % e "
D3¢i = i? | % $i-2 * ¥
oo i? F %i-2
Clamped End

Do) = & {% by +30;"
D2¢1;;11_§{__§_Q¢1+%¢2-
D3¢1éi3[o-%¢2+%

¥, = iz [1s¢1 - 9, +

a1 0 Tl *

1 fa 2 2 1 1 .45, +
L5 [II T Nt ST R ¢i+z| b b e

4 i
%4 1 ¢i+2]

1 4.6
+whD¢i+..-

1 1 2.5
~§¢i+2]-th¢i+...

1,26
i ¢i+2] PR R e

6

+

1 S
95 P

1

4.6

360 o B

1 3.6
+—2- hD¢o+..-

[

2.6
(0) h™D ¢o

+
+

f st -«-«‘M‘a;&.ﬂ'vola e sk st AN 3 <>

(1) *

(2)*

(3)

(4)

(3)*

(6)*

(7)*

(8)
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Table III Cont'd

Simply Supported End

<34 4 93 g ¢ ) 17 g 5 | 6, + saa (9}
Dé; = |- 180 %1 * T00 %2 55 %3 * GO0 ¢4] 3000 ® D %
g e b e £ -
BT el RSB R RS 64| * ThoG RD, + e (1O
i, L8 B i 558 _ R
Pt iyt T G ta e o ¢4] + g nil, ¢ .o s
g mitfae Ly o Soma el R
“_ D¢1-h4[5 6, -Bo,+ 8o, -Tgey| - G5 ntnle, o (12)
®
Free End
At station i =1 |
L2V A ‘ |
ﬁ D6, = E [ 1.12749, + 1.2706¢, - 0.1588¢, + 0.01579,|
- 0.0035 h°D%, + ...(13)%
e
D2p, = 0 (14)
3y &
D%, =0 (15) z
Ay & < -
pley * 3 [4.2353¢l 9.1765¢, + 5.64719, o.7059¢4]
& + 2255 h°D% + ... (16)
g‘ At station i = 2
? ol e St SRR g 66 5
| Db, = F [ 26, +3F+15°% - 3 ] 0.0106 h°D%; (17)
*,
A pe, = li[l 13736 - 2.35299, + 1.29419; - 0.0784% ‘
» h
£ + 0.0720 hiD% + ... &)+
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Table III Cont'd

Ao w3 -
Y, = 5 [1.2941¢1 2.47069, + 1.0588¢, + o.1177¢4]
+ 0.3765 h3D6¢1 % vus (19}
6 sp L i
ply, = 7 [ 1.64716, + 4.2353¢, - 3.5294¢, + o.9412¢4l _ |

+ 1.1451 h2D6¢1 ¥ vse (209

Ny

*The asterisks denote those formulas of Table III which differ
from the corresponding formulas of Table II.

**In this table the band width is always chosen so as to give

2

5 a truncation error of order h for D4¢ . The truncation errors

of the other derivatives are then fixed accordingly.
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5. Difference Formulas at Right Boundary

It has been convenient to present the boundary formulas in
Tables I, II and III specifically for the left end of the span.
The corresponding formulas for the right end can readily be in-
ferred from the foregoing results from considerations of symmetry.
First we replace ¢l' ¢2, ¢3. and ¢4 by the corresponding quanti-
ties ¢y, by s by., and ¢, , respectively. In this connection
it is also convenient to reverse the order of corresponding terms
from left to right so that the terms still appear in order of in-
creasing index. Secondly, we must reverse all signs for the
derivatives of odd order.

We illustrate these rules by applying them to a clamped end,
as given originally in Egs. (5) through (8) of Table I. Thus for

the right end clamped

& & . - 14253
Doy = F [o > by * 0] + g héD% (5.1)
p%p. =1 [0 + ¢ - 2% b n2ps (5.2)
NT L7 N-1 N iz N ;
L | Ay I
il Sae { 2 %%-2 *Oy-1 " 2 ¢N]+ g D %N ol
p* =1 - 4 + 7. |- 1 D3¢N+l
Oy = o3 Onaz = MWpag n|m 3 = (5.4)

The same method can of course be applied to any of the other
results developed in this paper to adapt them to the right end of

the span.




6. Reduction to Penta-Diagonal Format at Boundaries

If the basic relation, Eq. (1.l1), be expressed in terms of
the conventional finite difference formulas of Table I, the re-
sulting calculation matrix is strictly penta-diagonal. It has
%l earlier been pointed out, however, that if Eq. (1.1l) be expressed
’ in terms of the revised finite difference formulas either of Table
ITI or of Table III, the resulting calculation matrix, while still
penta-diagonal over all interior rows, falls outside the penta-
diagonal format by one place in the first row i =1 and last row
i = N . The purpose of this section is to show how these two
minor deviations can easily be rectified.

‘n Let us consider the left end of the span first. More speci-
¥ fically, consider the final matrix equations at stations i =1

and 1 = 2 . These will reduce to the form

+ a +* o

4 813 61 * @33 63 Fag3 b3 a3, b0y =9 (6.1)

@) #1 + Ggp 85 F 53 63 F a5, 0, =g, (6.2)

where the coefficients “ij and the quantities 9, and 9,

are all known constants in any particular case.

K We can eliminate 94 between these two equations by multi-
plying Eq. (6.1l) through by

and Eq. (6.2) by then

%34 e | &
adding. These operations give rise to the following auxiliary

constants which can be readily computed as definite numbers, namely,

- 1
B 11 7 Yt T e
& .
§ %12 * %2512 T %34%22
b 6-1
e

e 0 D Pt P




1
13 ™ %24%13 T %14%23
]

9] = 09,5497 T 1,49, (6.3)

a

In this way we finally obtain the relation

] | ]
@11 ¢ * 3y #p t a5 b3 =g (6.4)

Eq. (6.1) of the original matrix can now be replaced by Eq.

(6.4). This substitution reduces the band width at station i =1

such as to fit the matrix into the required penta-diagonal format.

> A corresponding correction can also be made at station
i=N.

- Notice that these operations, which reduce the band width in

the first and last lines of the final calculation matrix as re-

3 quired, are very simple and do not adversely affect the truncation

error of the final system of equations.
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7. Example: Uniformly Loaded Beam with Clamped Ends

Two examples have been worked out to illustrate the improve-
ment in accuracy that occurs when the revised difference formulas
of Table II or Table III are used in place of the conventional
formulas of Table I. In this section we consider a beam of uniform
stiffness with clamped ends under a uniform distributed load. 1In
the next section we consider a beam of variable stiffness with
simply supported ends under a uniform distributed load.

For the uniform beam, the nondimensional governing equation

reduces to
D¢ =1 (7.1)
and the boundary conditions are for clamped ends

¢ =0
at x =0 and x =1 (7.2)
D¢ = 0

The exact analytical solution of these equations is simply

6, = 37 x> (1-x)° (7.3)

In the finite difference solution, only half the beam need be
considered because of symmetry. Let index M denote the station
at mid-span. The central difference expressions at stations
i=M-1 and i =M may be simplified by the substitutions

Pue1 = Pn-1
(7.4)
®m+2 = Pu-2




The conventional finite difference matrix for this case can
now be written almost by inspection. For the first row i =1
we simply utilize Eq. (8) of Table I. For the interior rows
i=2,3,4, ... we use Eq. (4) of Table I. The matrix coeff-
cients for the last two rows i = M~1] and i = M are easily
determined by making use of Egs. (7.4) in connection with Egq. (4)

of the table.

——

The following matrix is thereby obtained.

—~ - r \ »
6, 1
-4 ¢, 1
¢y 1
¢4 g
1 )
. - ‘ .
n? 4 ) ! (7.5)
1 ¢H—2 1 ¥
-4 ¢M—l ‘1 v

The matrix for the revised difference scheme of either
Table II or Table III is identical to Eqg. (7.5) except for the
first row. Using the revised difference formula shown in Egq. (8)
of Table II or Table III gives the following improved approximation

for the first row, namely,

1 - 8 Iy ! -




The second row remains unchanged, namely,

1 X

;T [ 4¢l + 6¢2 4¢3 + ¢4J = 1 (7:7)
Multiplying Eq.(7.7) through by + % and adding it to Egq.

(7.6) eliminates g, and gives

15 i

1 5
;4- l5¢1 T ¢2 + 3 ¢3] = (7.8)

Sl

Eg. (7.8) is the contracted version of the revised first row
that is inserted into the final matrix. This version is just as
accurate as Eq. (7.6) but has the advantage that it fits strictly
within the penta-diagonal format.

Solutions have been obtained in double precision to Eg. (7.5)
for both the conventional first row and for the revised first row
given by Eq. (7.8). Results were calculated for three values of
the important dimensionless mesh size parameter h , namely,
h=1/10, h = 1/20 and h = 1/40 . The calculations were per-
formed in double precision on the IBM 360/67 computer at the Naval
Postgraduate School.

As convenient measures of the overall relative error of the

final numerical solution, the following two parameters are used,

namely,
|¢ " ¢elmax
€lx=1/2
and
2 - o,
s = > A (7.10)
o, |
. x=0
7-3
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In beam problems e expresses the maximum relative error

| in the calculated deflection while 6 expresses the maximum !
relative error in the calculated curvature, and hence in the
associated bending stresses.

Curves of € and § versus h are shown in Fig. 1 corres-
ponding to the conventional difference formulas of Table I and to
the revised formulas of Tables II and III.

The results are quite interesting. They confirm that both

error indices ¢ and § are greatest for the conrventional difference

formulas of Table I. At the other extreme, both € and & vanish
identically for the difference formulas of Table III. Of course,
such a complete elimination of all truncation error must be re-
garded as exceptional. It can only happen for those cases, like
the present example, in which the true deflection curve happens to
be a quartic. The curve is a guartic for any uniform beam under j
e uniform load, irrespective of the boundary conditions. |
The revised finite difference formulas of Table II are seen
to produce results in this case intermediate between those given

by Tables I and III. Thus ¢ vanishes but 4§ does not. By an

4 interesting coincidence, the formulas of Tables I and II happen

to give identical curves of & versus h in this example.

P T

Inspection of the detailed solutions reveal, however, that the
actual truncation errors represented by Table II are precisely

equal in magnitude but opposite in sign to those produced by the

2. Vi

conventional formulas of Table I! No specific reason is known for

this curious and striking co-incidence.
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RELATIVE ERRORS € AND &

RELATIVE ERROR €

per Table I
(NOTE: TamemA

II give € =0.)

Tigl +
RELATIVE ERROR O
per Tables I}
and I -\A+
(NOTE: Table I
gives 8= 0.)
-3
10
+
N
0.01 0.1
h —9
FIG. 1: ERRORS OF NUMERICAL SOLUTION

FOR BEAM OF UNIFORM STIFFNESS
WITH CLAMPED ENDS.
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8. Example: Beam of Variable Stiffness with Simply Supported Ends

In this section we consider a uniformly loaded beam of vari-
able stiffness, simply supported at both ends. Specifically, we
choose a beam governed by the nondimensional equation

02 (x30%4) = xp% + 6x°D° + 6xD%p = 1 (8.1)

over the range

18 x%$2 (8.2)

The boundary conditions for simply supported ends are

¢ =0
} at x =1 and x = 2 (8.3)
D% = 0

The exact solution for ¢ is

by = T (10 en 2-3) (1-x) + % [§.+ (3+x) 2n x -g] (8.4)

Next we must obtain the conventional finite difference
matrix corresponding to Table I. It is convenient in this case to

multiply Eq. (8.1) through by h4 and to introduce the notation

x; = L'+ 1'h 1 ® g0 2p0 Iyl wleie (8.5)

For all stations other than station i =1 and station
i = N, the regular central difference formulas of Egs. (2), (3)
and (4) of Table I apply. Upon substituting these equations into

Eq. (8.1) and regrouping terms, we can reduce the result to the

following format, namely,

8-1




e 3 2 2

3 2 3 2 2
+ (6xi - 12xih ) ¢i + (= 4xi 6xih + Sxih ) ¢i+l (8.6)

3 2 2%
+ (xi + 3xih) ¢i+2 = h
For station i =1 , Egs. (10), (11) and (12) of Table I apply

and Egq. (8.1) reduces in this case to

3

3 2 2 f BRrY 2
(5x] + 3xjh - 12x,h%) ¢, + (- 4x; - 6x;h + 6x,h°) ¢, (8.7)

¢

3

2 Bt
+ (x] + 3x7h) ¢, =h

For station i = N , expressions must be obtained for D2¢N ’
D3¢N, D4¢N by analogy with Egs. (10), (11) and (12) of Table I,
using the rules of symmetry summarized in section 5. Then Eq.
(8.1) reduces to

3 2 3 2 2
(xg = 3xh) Sy o + (= dxg + 6xch + 6x.:h%) o (8.8)

+ (5% - 3x2h - 12xNh2) ¢y = h*

The finite difference matrix defined by Egs. (8.6), (8.7)
and (8.8) was solved numericaliy for various values of the dimen-
sionless mesh size parameter h . Each result was compared with
the corresponding exact analytical solution of Eg. (8.4) for the
same value of h . The relative error ¢ , as defined by Eq. (7.9),
was calculated for each solution. The second error function § ,
as defined in Eg. (7.10), was not calculated for the present
example.

The above values of ¢ were plotted against h . The re-

sult is represented in Fig. 2 by the line marked I.
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Consider next the revised solution based upon the revised
finite difference formulas proposed in Table II. Careful examina-
tion of Eq. (8.1l) and of Tables I and II discloses that this case
differs from the previous one only in the first and last rows,
i=1 and i =N.

The revised equations for the first and last rows turn out

to be as follows.

33 &3 R8N 2
(3- xl + -i-— xlh 12 xlh ) ¢1
27..3 ..84%12 2
+ ( = X i xlh + 6xlh ) ¢2 (8.9)

3 g 3 10 .2
= 15 %) %x-3 * (3 ¥y - IT Xy %y-2 =
27 _3 3

+ - g+ 3 gn s e ¢N—1+(§'gxu'%x§h’lzxwh2’¢u=h4

The resulting matrix was then completed, solved and analyzed
in the same general fashion as described above for the previous
case. The corresponding curve of error ¢ versus mesh size h
is shown in Fig. 2 by the line marked II.

The same general pattern was also repeated for the finite
difference formulas of Table III. In this case the entire matrix
must be modified. The new matrix is defined by the following

three governing equations.
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I Table Nos.
I
H - Half Station
Method
i (Ref. 1)
: -4
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0.01 0.02 003 0.05 0.10

FIG. 2: ERRORS "OF VARIOUS APPROXIMATIONS
FOR BEAM OF VARIABLE STIFFNESS
WITH SIMPLY SUPPORTED ENDS.
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For all interior rows 2<i < (N-1l) the basic equation is

found by substituting Egs. (2), (3) and (4) of Table III into

Eq. (8.1) This reduces to the result

3 APY: ey - 2 2
(xi 3xih 3 xih ) ¢i—2 + ( 4xi + 6xih + 8xih ) ¢i-l

3! 2 s 3 2 2
+ (6xi leih ) ¢i + ( 4xi 6xih + Bxih ) ¢i

3 2 1 2 e
+ (xi + 3xi§ -3 xih ) ¢i+2 = h (8.11)

The result for row i =1 is found by substituting Egs. (10),

(11) and (12) of Table III into Eq. (8.1). This gives

32 _3 72 _2 76 2 i 2003 189 2 87 2
TR R e MG - G R TR ¥
8+ 48,2 L 4y p? e s e S
@ Em g gh - pah) 6 + (- g3 x) - 45 B+ 55 xhY) 6
4
= h (8.12)

The corresponding result for station i = N is found from the

above by applying the rules of symmetry as explained in section 5.

This gives

MR- BN RS S B3 _ 48 2 & ._.2
(- To %3 * 53 xqh + 35 %)) e a3 ogh - o) 6y,
o7 .3 189 _2 87 32 72 76
R SENEE SR R R

Of course, the above results for rows i =1 and i = N

now lie outside the band limits for a penta-diagonal matrix, but

they can readily be contracted by the method explained in section
6‘
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Egs. (8.11), (8.12) and (8.13) were solved numerically in
the usual way. The resulting curve of ¢ versus h is shown
in Fig. 2 as the line marked III. The marked change in the error

curve between h = 0.1 and 0.05 is due to the fact that the

alleaia e bii age b L ol

sign of the error changes at the centerline.

An interesting comparison of the results from the methods
proposed herein can be made with the results of a study using the
"half-station" method presented in Ref. 1. In the half-station
method the finite difference approximations are made before ex-

§ panding the derivatives in Dz(x302¢) as opposed to the conven-

tional, or whole-station method, wherein the finite difference
approximations are made after Dz(x3D2¢) is totally expanded.
The conventional finite difference approximation for the boundary
condition D2¢ was used at the two ends of the beam in Ref. 1.

The relative error ¢ , as defined by Eq. (7.9), produced by the

half-station method for this example was shown in Ref. 1 to be of

the form

e = (0.4 x 10°2/0.4196 x 10”2) n2 (8.14)

where the value 0.4 x ].0-'2 is obtained from Fig. 3 of Ref. 1

N and 0.4196 x 10”2

is the displacement of the beam at the center-
; line. This expression for ¢ was verified by a numerical

& solution of the half-station equations for several values of h
The error given by Eq. (8.14) is plotted in Fig. 2 as the line

marked H .
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Fig. 2 permits some very interesting and useful conclusions

to be drawn. Like the previous example, it again confirms that
the conventional finite difference formulas of Table I give by
far the highest overall errors. The revised formulas of Table
II are seen to reduce the above errors by a factor of approxi-
mately five. It is interesting that curves II and III cross at
approximately h = 0.05 , and that for mesh sizes finer than
this, the formulas of Table II give somewhat better results than
those of Table III. Inasmuch as the former are also somewhat
simpler, there would seldom appear to be much reason to resort
to the latter.

Notice too that while the half station method of Ref. 1 is
superior to the conventional formulas of Table I, the revised
formulas of Table II are in turn superior to the half station
method.

We may conclude that the revised finite difference formulas
of Table II probably represent the best overall compromise between

accuracy and simplicity for most typical problems.
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